Projective Pairs of Profinite Groups
نویسنده
چکیده
We generalize the notion of a projective profinite group to a projective pair of a profinite group and a closed subgroup. We establish the connection with Pseudo Algebraically Closed (PAC) extensions of PAC fields: Let M be an algebraic extension of a PAC field K. Then M/K is PAC if and only if the corresponding pair of absolute Galois groups (Gal(M),Gal(K)) is projective. Moreover any projective pair can be realized as absolute Galois groups of a PAC extension of a PAC field. Using this characterization we construct new examples of PAC extensions of relatively small fields, e.g. unbounded abelian extensions of the rational numbers.
منابع مشابه
Relatively projective groups as absolute Galois groups
By two well-known results, one of Ax, one of Lubotzky and van den Dries, a profinite group is projective iff it is isomorphic to the absolute Galois group of a pseudo-algebraically closed field. This paper gives an analogous characterization of relatively projective profinite groups as absolute Galois groups of regularly closed fields.
متن کاملProfinite groups, profinite completions and a conjecture of Moore
Let R be any ring (with 1), Γ a group and RΓ the corresponding group ring. Let H be a subgroup of Γ of finite index. Let M be an RΓ−module, whose restriction to RH is projective. Moore’s conjecture [5]: Assume for every nontrivial element x in Γ, at least one of the following two conditions holds: M1) 〈x〉 ∩ H 6= {e} (in particular this holds if Γ is torsion free) M2) ord(x) is finite and invert...
متن کاملModular Representations of Profinite Groups
Our aim is to transfer several foundational results from the modular representation theory of finite groups to the wider context of profinite groups. We are thus interested in profinite modules over the completed group algebra k[[G]] of a profinite group G, where k is a finite field of characteristic p. We define the concept of relative projectivity for a profinite k[[G]]-module. We prove a cha...
متن کاملThe True Prosoluble Completion of A
The true prosoluble completion PS(Γ) of a group Γ is the inverse limit of the projective system of soluble quotients of Γ. Our purpose is to describe examples and to point out some natural open problems. We answer the analogue of a question of Grothendieck for profinite completions by providing examples of pairs of non–isomorphic residually soluble groups with isomorphic true prosoluble complet...
متن کاملCohomology of Profinite Groups
The aim of this thesis is to study profinite groups of type FPn. These are groups G which admit a projective resolution P of Ẑ as a ẐJGK-module such that P0, . . . , Pn are finitely generated, so this property can be studied using the tools of profinite group cohomology. In studying profinite groups it is often useful to consider their cohomology groups with profinite coefficients, but pre-exis...
متن کامل